
ARL-TR-8167• SEP 2017

US Army Research Laboratory

Ego-motion and Tracking for ContinuousObject Learning: A Brief Survey
by Jason Owens and Philip Osteen

Approved for public release; distribution is unlimited.

NOTICES
Disclaimers

The findings in this report are not to be construed as an official Department of the
Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorse-
ment or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

ARL-TR-8167• SEP 2017

US Army Research Laboratory

Ego-motion and Tracking for ContinuousObject Learning: A Brief Survey
by Jason Owens and Philip OsteenVehicle Technology Directorate, ARL

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704‐0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704‐0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202‐
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD‐MM‐YYYY)

2. REPORT TYPE

3. DATES COVERED (From ‐ To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
 OF
 ABSTRACT

18. NUMBER
 OF
 PAGES

	

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (Include area code)

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

September 2017 Technical Report

Ego-motion and Tracking for Continuous Object Learning: A Brief Survey

Jason Owens and Philip Osteen

ARL-TR-8167

Approved for public release; distribution is unlimited.

October 2016-September 2017

APPLE

US Army Research Laboratory
ATTN: RDRL-VTA
Aberdeen Proving Ground, MD 21005-5066

Primary author’s email: <jason.l.owens.civ@mail.mil>.

This report provides a brief review of current and past research related to the tasks of ego-motion estimation and object tracking
from the viewpoint of their role in continuous object learning.

intelligent systems, perception, incremental learning, instance recognition, ego-motion estimation, object tracking

50

Jason Owens

410-278-7023Unclassified Unclassified Unclassified UU

ii

Approved for public release; distribution is unlimited.

Contents
List of Figures iv
List of Tables iv
1. Introduction 1

1.1 Continuous Object Learning 1
1.2 Ego-Motion and Tracking 3

2. Brief Survey: Ego-motion 5
2.1 Visual Odometry 6
2.2 SLAM 11
2.3 Attributes 16
2.4 Challenges 18

3. Brief Survey: Tracking 19
3.1 Motion-Based Tracking 20
3.2 Model-Free Tracking 21
3.3 Model-Based Tracking 25
3.4 Attributes 28
3.5 Challenges 30

4. Conclusion 31
5. References 32
List of Symbols, Acronyms, and Abbreviations 41
Distribution List 43

iii

Approved for public release; distribution is unlimited.

List of Figures
Fig. 1 A notional high-level system diagram for a continuous object learner2

Fig. 2 libviso2 visual odometry system. ...8

Fig. 3 Example DVO image warping. ...9

Fig. 4 LOAM mapping output and system diagram. 10

Fig. 5 An example of the loop-closing concept in a simplified hallway. The left
image shows a camera that has computed visual odometry and revisited
both point A and point B without closing the loop. The right image, on the
other hand, is the map result from a simultaneous localization and
mapping (SLAM) algorithm after detecting the loop closure and
optimizing the map. Reproduced from Cadena et al. 12

Fig. 6 ORB-SLAM feature and map density. Note the sparsity of the
feature-based map. Reproduced from Mur-Artal et al. 13

Fig. 7 ElasticFusion mapping example.. 15

Fig. 8 Simulated annealing for anytime optimization. 21

Fig. 9 Multidomain deep networks for tracking. 24

Fig. 10 Integration of a correlation filter layer into a deep network architecture. 25

Fig. 11 Architectural diagram for multiobject tracking using RNN and stacked
LSTM.. 27

List of Tables
Table 1 An overview of selected ego-motion algorithms reviewed in this section

and their attributes. ... 17

Table 2 An overview of selected tracking algorithms reviewed in this section and
their attributes. .. 29

iv

Approved for public release; distribution is unlimited.

1. Introduction
Ego-motion estimation, or the ability to estimate one’s own motion, is important for
an embodied agent (whether animal or robot) to know where it is and how it may
interact with the environment. Object tracking, on the other hand, complements
ego-motion awareness by estimating the independent motion of other objects in the
environment. In many ways, they provide a level of continuity to our perception and
actions that can enable us as humans to build models of the world and the objects
within it, and should do likewise for robots.

This survey is intended to broadly describe the current state of the ego-motion es-
timation and object tracking fields. We believe these capabilities are required to
support online adaptive learning of objects in dynamic environments. This is by no
means a complete treatment of these topics; rather, this is a broad review meant to
focus on the current capabilities in these areas and point out the challenges with
respect to a continuous object learning system.

1.1 Continuous Object Learning
Our long-term goal is to identify the theory and principles underlying real-world
continuous and adaptive visual perception for intelligent systems. We believe that
it is a requirement that embodied intelligent systems extract a significant portion of
their knowledge directly from experience in the operating environment.

We hypothesize that an agent that continuously learns to recognize objects from
experience (a continuous object learner [COL]) requires mechanisms to (1) track
ego- and object-motions for object permanence and multiview object modeling, (2)
recognize and focus attention on things and stuff of interest, (3) convert raw sen-
sor data into rich, flexible internal representations, (4) detect previously observed
object instances and object categories, (5) detect novel objects, and (6) generalize
collections of novel instances into categories over time.

Our hypothesis is formed through reasoning from the evidence available in human
perception and our experience with existing computational perception algorithms.
In Fig. 1, we present a high-level data flow diagram for a hypothesized continuous
object learner.

1

Approved for public release; distribution is unlimited.

Segmentation
& Attention

Ego-motion
and Object
Tracking

Object
Representation

Instance
Recognition

Category
Recognition

Generalization

Object
Memory

Sensor
Data Novelty

Object
Recognition

Fig. 1 A notional high-level system diagram for a continuous object learner

If we do not wish to arbitrarily ignore agent and object motion, which is a require-
ment for mobile agents and dynamic environments (the purview of Army robotics),
then the system must have a mechanism to compute the motion of the sensors with
respect to the environment as well as object motions. These capabilities are required
for various aspects of robot operation, including data association between succes-
sive frames of input. Continuity of perception is critical for humans in determin-
ing object permanence and identity, and the phenomenon depends on dynamically
adaptive ego-motion estimation functions of the human perceptual system.1 If hu-
mans (or a COL) could not relate what we see at time t to time t + 1, it would be
much harder to learn from experience. If the COL were unable to relate images of
objects in successive frames, it would be much more difficult to associate multiple
views of the same object; instead, each view would be considered a new object.
Furthermore, it is easy to see how the agent’s motion with respect to the world and
independent object motions are related and intertwined: any ego- or object-motion
observed by a sensor will result in changes to the raw data between frames. Without
some mechanism to explain the change and relate it to the previous frame, we can
make no inference about the change in the state of the world. In addition, object
motion is related to the segmentation and attention problem through the fact that an
independently moving object automatically provides segmentation cues, related to
the Gestalt principle of common fate.2

2

Approved for public release; distribution is unlimited.

1.2 Ego-Motion and Tracking
Mobile systems operating in complex environments need some way of relating
frames of data observed at different times to one another. Ego-motion estimation
is the process of tracking sensor motion to determine the current motion and pose
of the agent within an environment. Typical ego-motion algorithms measure static
aspects of the environment; however, we require robots to also function in complex,
dynamic environments. For a COL, moving objects in the environment are interest-
ing for several reasons: we want to avoid colliding with another moving entity (in
most cases), a moving object provides automatic segmentation for itself by virtue
of its change with respect to the environment, and we would like a COL to identify
what these moving things are to potentially interact with them. We therefore expect
complementary object tracking and ego-motion algorithms to provide a clear esti-
mate of the geometry and dynamics of the world, and the robot’s pose within the
environment.

One of the simplest ways to estimate motion for a basic wheeled robot (which can
be generalized to nonwheeled systems) is to make use of wheel odometry (derived
from the Greek odos for “route” and metron for “measurement”). Knowing the size
of the wheels, where they are placed on the robot and how they are turning provides
enough information to compute a motion estimate. While this is a common and
widely used source of estimated motion, it is usually not the only one since it is sub-
ject to many errors from wheel slip or skidding, and only provides a 3-dimensional
(3D) estimate (x, y, θ) based on contact with the ground. To help mitigate some of
these drawbacks, an inertial measurement unit (IMU) may be used to get more lo-
cally accurate information about the 3D rotational velocity and 3D acceleration of
the robot in order to integrate position and velocity over time.

The method of motion estimation we just discussed focuses on 2 sources of pro-

prioceptive information. Proprioceptive sensors record information that originates
from within an agent (e.g., recording the wheels’ motion as driven by the motors but
not how the wheels interact with the ground, or the inertial sensing of the IMU that
gives a change in the rotational velocity). In contrast, sensors like the accelerome-
ters of the IMU, cameras, and laser range finders directly sense some aspect of the
surrounding environment: accelerometers sense the force of gravity, cameras sense
light energy from the environment, and laser range finders directly measure distance
to sufficiently reflective objects in the environment. These sensors are exteroceptive,

3

Approved for public release; distribution is unlimited.

and besides providing potential improvements to motion estimation (e.g., measur-
ing perceived motion with respect to fixed external landmarks) they also open up
the possibility of measuring and modeling the environment.

Using cameras for motion estimation is a form of odometry, called visual odometry
(VO) in the literature. The task of visual odometry is simply to measure the motion
of the agent using visual sensors. However, if the agent simultaneously builds a map
using exteroceptive information from the cameras and laser sensors, then the task
is called simultaneous localization and mapping (SLAM). The benefit of such an
algorithm is that a robot is able to recognize that it has been in a particular place
before, since the motion estimation, map, and localization allow it to maintain and
recognize features of the environment.

If there are objects moving around the robot, however, odometry based on exte-
roceptive input will fail unless the moving objects are ignored or the states of the
moving entities are correctly modeled. Therefore, most VO and SLAM algorithms
ignore dynamic information. However, handling dynamic environments is impor-
tant for continuous object learners, and we can model object motion using tracking
algorithms, whose goal is to maintain awareness of specified objects in an arbi-
trary environment. Typically, trackers require the target object’s location in an initial
frame, then they must find instances of the object in subsequent frames. In general,
the solution is improved by estimating the motion of the tracked object, and this
is in turn aided by also knowing the motion of the tracking sensor as well as the
model of the static environment. The tracking problem places unique constraints on
algorithms compared to other computer vision problems such as object detection.
A tracking algorithm must run at real-time speeds to be useful on a live mission,
should support scaling object window sizes dynamically, and should be able to track
potentially deformable objects using a very small set of training data (e.g., one or
more example frames).

A critical component of any tracking algorithm is determining which objects should
be tracked in the first place. Generally, tracking approaches use 1 of 3 methods
to make this determination. Motion-based tracking assumes that moving objects
can be segmented from the environment, and that only dynamic objects are worth
tracking. In many cases, this is a reasonable assumption that represents many of the
use cases for tracking while simplifying the segmentation problem. However, for a

4

Approved for public release; distribution is unlimited.

moving sensor, this approach is more challenging since egomotion must also be es-
timated in order to separate dynamic objects from a static background. Furthermore,
one can imagine situations wherein mobile platforms need to track (temporarily)
stationary targets, while they themselves maneuver through the environment.

Model-based tracking approaches support tracking static and dynamic targets with-
out the need for a user to explicitly specify the target in the environment, instead
using a priori models of each target. This advantage comes at the cost of generality,
however, as such systems only support tracking a finite set of objects that are speci-
fied ahead of time. Although we envision tracking as a more primitive process for a
COL, and do not assume we have a priori models available, we will briefly review
existing model-based methods for completeness. Model-free tracking, in contrast,
does not require a priori models to specify which objects to track, which means
that some other method must supply the set of tracking objects. In practice, this
often comes from user-supplied bounding boxes in the first frame of an input se-
quence. The model must then be built on the fly, using just the data from the initial
frame for training, and must also dynamically adapt its model as more instances
are observed. If no explicit user-supplied object segmentation is given, another seg-
mentation method must be used in its place. In this case, either object proposals3

or motion-based segmentation algorithms4 are employed. For the purposes of this
discussion, we group model-free trackers based on motion segmentation with other
motion-based trackers.

2. Brief Survey: Ego-motion
In this section, we review the main approaches to ego-motion estimation based on
visual input. VO computes pose based on visual input, while SLAM often makes
use of visual odometry for local pose estimation, but also constructs maps and rec-
ognizes places to improve pose estimation over time. We follow the surveys of VO
and SLAM with a breakdown of attributes for distinguishing selected algorithm
capabilities, and a discussion of the challenges we may face when integrating ego-
motion estimation into a continuous object learner.

5

Approved for public release; distribution is unlimited.

2.1 Visual Odometry
Visual odometry is concerned with computing the motion of a sensor using visual
data streaming from that sensor. Following the classification of Engel et al.,5 the
computational method for incremental pose transformation between sensor frames
can be described using 2 dimensions: the nature of the input and the density of the
input. The first dimension describes what values are used in the computation; in
visual odometry, the data provided by the sensor(s) are spatially organized photo-
metric measurements of the amount of light registered by the sensor (i.e., the pixel
values). If an algorithm uses this photometric information, then it is called a di-

rect method. Alternatively, if there are derived values computed from the image,
(e.g., keypoints, descriptors, and/or vector flow fields), then we call the method in-

direct. Note that since direct methods use the photometric information directly, the
optimization models photometric noise, while the derived values in the indirect case
are geometric in nature (points and vectors), and therefore the optimization models
geometric noise.

The second dimension indicates how much information is used for the computation.
If an algorithm attempts to use all the pixels (or as many as possible) from the input,
then it is called a dense method. In contrast, a sparse method specifically uses a
small subset of the pixels/points available, usually around 2 orders of magnitude
less than than the number of pixels. Dense methods do not extract a discrete set of
features, but instead rely directly on the data itself to compute an estimate of motion.
The main idea is to use more of the image data than sparse methods with the goal of
improving the camera and environment model motion estimates. In contrast, sparse
methods often use discrete feature keypoints (e.g., scale-invariant feature transform
[SIFT],6 oriented FAST and rotated BRIEF [ORB]7). These keypoints, along with
the data, serve as input to an algorithm that will produce a set of descriptors. The
descriptors are representations of the input, designed to enable feature matching
between frames by comparing the distance between pairs of descriptors.

For simplicity, we primarily focus on stereo, red, green, blue and depth (RGB-D),
and laser-based modalities that can directly compute 3D features within the envi-
ronment, as they are the most useful for enabling accurate, scale drift-free maps and
motion estimates. Monocular algorithms, while powerful and efficient, cannot com-
pute the scale of the environment (although they can be filtered with other odometry
methods that can). 2-dimensional (2D) laser scan-matching algorithms, while very

6

Approved for public release; distribution is unlimited.

popular on experimental robotic systems, are also insufficient for our needs, since
they cannot compute full 6-DOF pose estimates and are easily confused by nonflat
environments.

libviso2 by Geiger et al.8 is a simple but effective stereo visual odometry al-
gorithm created by the group responsible for the KITTI benchmark suite.9 It is a
prime example of sparse indirect visual odometry methods (see Scaramuzza and
Fraundorfer10 for a nice overview of the approach). Ego-motion is computed using
simple blob and corner-like features distributed over the full image, which are stereo
matched between the left and right frame to compute 3D pose, and then temporally
matched between successive frames to estimate motion (Fig. 2). Complex feature
descriptors are not needed since there is an assumption that frames are temporally
and spatially close (i.e., from a 30-Hz camera). Instead, a simple sum of absolute
differences of an 11 × 11 pixel block around the keypoint is used as a descriptor
distance method. Ego-motion estimation is implemented as a Gauss-Newton mini-
mization of reprojection error:

N∑
i=0

∥∥xi
(l) − π(l)(Xi, r, t)

∥∥2
+
∥∥xi

(r) − π(r)(Xi, r, t)
∥∥2

, (1)

where Xi are the 3D points corresponding to the features x
(l)
i ,x

(r)
i in the left and

right images, π(l), π(r) are the corresponding left and right projection functions,
based on intrinsic and extrinsic calibration of the cameras, and r, t are the rotation
and translation parameters being estimated.

7

Approved for public release; distribution is unlimited.

Fig. 2 libviso2 visual odometry system, an example of a sparse, indirect VO method. The left
image illustrates the overall operation of the system (temporal ego-motion estimation, stereo
matching and 3D reconstruction). The right image shows the matched features and their mo-
tion in 2 situations: (a) moving camera and (b) static camera. Reproduced from Geiger et al.8

Steinbrucker et al.11 present Dense Visual Odometry (DVO), a VO algorithm that is
based on RGB-D sensors instead of stereo cameras. DVO eschews feature extrac-
tion in favor of a dense model in order to take advantage of as much of the image
as possible. The algorithm utilizes a photometric consistency assumption to maxi-
mize the photoconsistency between 2 frames. Photometric consistency means that
2 images of the same scene from slightly different views should have the same mea-
surements for pixels corresponding to a given 3D point in the scene. Steinbrucker
et al. minimize the least-squares photometric error:

E(ξ) =

∫
Ω

[I(wξ(x, t1), t1)− I(wξ(x, t0), t0)]
2 dx, (2)

where ξ is the twist representing the estimated transformation, and the w(x, t) func-
tion warps the image point x to a new image point at time t using the transformation
ξ and the associated depth map. I(x′, t) is a function that returns the image intensity
value at position x′ at time t. Note how this represents a dense direct approach, in-
tegrating over the entire image domain (Fig. 3), while the sparse indirect approach
in libviso2 is a sum over only the extracted features. The 3D points in an RGB-
D approach come directly from the produced depth map and do not require any
explicit stereo computations. In practice, dense approaches vary in their actual den-
sity: RGB-D based dense approaches can be much more dense than monocular or
stereo approaches, although in both cases they use more image data than a sparse
approach. Unfortunately, the cost of higher density is more computation, so the
tradeoff often depends on the accuracy required in the motion estimation.

8

Approved for public release; distribution is unlimited.

Fig. 3 An example of RGB-D image warping in DVO. (a-b) show the input images separated
by time, while (c) shows the second image warped to the first, using the photometric error
and the depth map to compute how the pixels should be projected into the warped frame. (d)
illustrates the small error between (a) and (c). Reproduced from Steinbrucker et al.11

The use of current RGB-D sensors has benefits and drawbacks: as active stereo de-
vices, they do not require strong features in the environment to compute depth val-
ues, yielding dense depth images; however, they usually have relatively short range
(relying on a pattern or measured time of flight from an infrared (IR) projector) and
do not work well (if at all) in outdoor conditions.*

Lidar odometry and mapping (LOAM12) and visual odometry-aided LOAM (V-
LOAM13) are related ego-motion algorithms by Zhang and Singh that use 3D laser
scanners (e.g., the Velodyne HDL-3214) to compute both maps and motion estimates
(see output and system flow in Fig. 4).† LOAM works (and works very well, see the
KITTI9 odometry benchmarks) by carefully registering 3D point cloud features to
estimate sensor motion at a high frame rate, and then integrating full undistorted
point clouds into the map at lower frame rates while adjusting the sensor pose es-
timates. This algorithm can work with sweeping single-line laser scanners as well
as full 3D scanners by estimating the pose transform between each line scan. If
such a sensor is available, this algorithm produces some of the lowest error motion
and pose estimates over large-scale paths. The primary drawback is that the code
is no longer available in the public domain, since it has been commercialized as a

*Newer RGB-D sensors seem to address this problem, with slightly longer ranges and claims of
outdoor operation. We do not yet have direct experience to comment on these claims.

†LOAM and V-LOAM are not full SLAM algorithms, since they do not include loop closure
and cannot perform global localization.

9

Approved for public release; distribution is unlimited.

stand-alone metrology product.*

(a) Example LOAM results.

(b) LOAM system diagram.

Fig. 4 An example of the LOAM mapping output along with a high-level block diagram show-
ing the system operation. The important function is the point cloud registration, enabling
the light detection and ranging (LIDAR) odometry computation that feeds the transform and
mapping outputs. Reproduced from Zhang et al.12

Monocular visual odometry algorithms have recently become more popular on
small robotic platforms due their extremely simple sensor arrangement (i.e., a sin-
gle camera) and their ability to operate on mobile computing hardware.16,17 Sev-
eral recent monocular algorithms (semi-dense visual odometry,18 semi-direct visual
odometry [SVO],19 and Direct Sparse Odometry [DSO]5) demonstrate impressive
mapping performance with low drift, all within a direct VO paradigm (i.e., they di-

rectly make use of the values from the camera and therefore optimize a photometric
error). These algorithms operate by estimating semi-dense depth maps using strong
gradients in the image along with temporal stereo (comparing 2 frames that differ
in time, with the assumption that the camera was moving during the time period),
and make extensive use of probabilistic inverse depth estimates. DSO is particularly

*Although the code was originally available as open source on Github and documented on the
Robot Operating System (ROS) wiki,15 the repositories have since been removed. Fortunately, some
forks of the repositories still exist, but the full ROS integration does not seem to exist. In addition, the
code is undocumented, has hard coded transformation assumptions, and is not written for modularity
or future programmers. However, it may provide sufficient guidance to those who wish to adapt and
extend the algorithm in the future.

10

Approved for public release; distribution is unlimited.

interesting since it is a direct method using sparse samples (but no feature detec-
tion) and it exploits photometric sensor calibration to improve the robustness of the
motion estimation over existing methods.

However, for monocular algorithms to be useful for typical robotics applications,
there must be some way to estimate the scale of the observed features for map gen-
eration and motion control. A typical (but not singular) method for accomplishing
this is by filtering the visual features with some other metric sensor such as an
IMU. This can be considered a sub-field of visual odometry, typically called visual-
inertial navigation. Since we assume we will have access to stereo, RGB-D, or 3D
laser information, reviewing this topic is out of scope for this document. How-
ever, for more information, see Weiss’ tutorial on “Dealing with Scale” presented
at Computer Vision and Pattern Recognition (CVPR) 2014.20

2.2 SLAM
Many of the VO algorithms we discuss create local models of the environment to
achieve more accurate motion estimates (i.e., odometry with less drift). It might be
natural to assume these algorithms could be included as the front-end in a SLAM
framework, and that assumption would be correct (see Cadena et al.21 for a great
overview of SLAM with a look toward the future). A SLAM front-end provides
motion estimates (like what we get from VO), while a SLAM back-end optimizes a
map given local constraints between sensor poses, observed landmarks, and global
pose relationships detected as “loop closures”. A loop closure is the detection of
2 or more overlapping observations, often separated considerably in time but not
in space; see Fig. 5 for a simple illustration. For example, if a robot maps a room,
exits to map another room or hallway, and then re-enters the first room, it should
detect a loop closure by virtue of being in the same place it was before and therefore
seeing the same landmarks. The term “loop” comes from the fact that the pose graph
(where sensor poses are vertices, and edges represent temporal or co-observation
constraints) forms a cycle or loop of edges and vertices when a revisitation occurs.

11

Approved for public release; distribution is unlimited.

Fig. 5 An example of the loop-closing concept in a simplified hallway. The left image shows
a camera that has computed visual odometry and revisited both point A and point B without
closing the loop. The right image, on the other hand, is the map result from a SLAM algo-
rithm after detecting the loop closure and optimizing the map. Reproduced from Cadena et
al.21

Stereo LSD-SLAM22 is a camera-based algorithm that represents an extension of
the LSD-SLAM23 monocular algorithm to a stereo setting. LSD stands for large-
scale direct SLAM and, as the name indicates, represents a direct, dense image-
based VO algorithm integrated into a SLAM system handling mapping and loop
closure. They build on the original algorithm by adding support for static stereo to
estimate depth, requiring no initialization method (typically required for monocular
VO algorithms) and obviating the need for the original scale-aware similarity trans-
form estimation. In addition, they add in a simple exposure estimation procedure
to help counteract the effects of lighting changes in real-world environments. Their
results are impressive but a little slow for larger image sizes (640×480 runs at only
15 Hz) if one is concerned about running in real-time on a robot. Currently, code is
available for only the monocular version.

As an example of a hybrid-indirect VO methodology used in a SLAM framework,
Henry et al.24 was one of the first high-quality dense mapping algorithms to make
use of RGB-D sensors like the Microsoft Kinect. The core algorithm is composed
of a frame-frame iterative closest point (ICP) algorithm on the point cloud derived
from the depth image, which is jointly optimized with sparse feature correspon-
dences derived from the red, green, blue (RGB) images. It uses both sparse and
dense data, thus forming what we call a “hybrid” methodology. The ICP and sparse
feature alignment are complementary: the former performs better with significant
geometry complexity in the environment, even when featureless, while the latter
supports alignment when there are features, but little to no geometry (e.g., walls
and floors with posters or other textured objects). To generate higher-resolution

12

Approved for public release; distribution is unlimited.

clouds, they postprocess the optimized map by integrating depth frames using a
surfel-based approach25 to better adapt regions with differing point density.

Another sparse-indirect VO method applied in a SLAM framework is ORB-SLAM2,26

an extension of the original ORB-SLAM framework27 to stereo and RGB-D cam-
eras for metric scale. ORB-SLAM2 is a combination of existing techniques that
provide a robust SLAM system with the rare capability of reusing maps for lo-
calization in previously visited areas. As the name implies, Mur-Artal and Tardós
make use of the ORB7 feature detector/descriptor to detect and describe features in
each frame (Fig. 6). Several aspects of this algorithm make it stand out: (1) both
near and far features are included in the map, (2) the map is reusable for localiza-
tion without mapping, and (3) there is no dependence on a graphics processing unit
(GPU). While aspect (3) has obvious benefits (i.e., it can be adapted to run on sys-
tems without a GPU), the first 2 require some additional explanation. In most recent
monocular VO approaches, feature depth (within a given keyframe) is parameter-
ized as inverse depth. This makes it easy to incorporate points at larger distances,
since 1

d
for infinite d is just 0. Points at infinity or with uncertain depth are still

useful for computing accurate rotations, even if they cannot be used to estimate
translation. By incorporating near (i.e., depth computable from stereo or RGB-D)
and far points, ORB-SLAM2 can generate better pose estimates using more infor-
mation. Finally, while SLAM algorithms are used to build maps, most are unable to
localize within those maps without generating new map data. This feature is partic-
ularly useful for a robotic system that may encounter new areas over time, but still
navigate previously mapped regions repeatedly.

Fig. 6 ORB-SLAM feature and map density. Note the sparsity of the feature-based map.
Reproduced from Mur-Artal et al.27

13

Approved for public release; distribution is unlimited.

In the popular subfield of 3D reconstruction using RGB-D sensors, 2 recent meth-
ods exemplify the volumetric integration approach. Ever since the influential Kinect-
Fusion papers28,29 demonstrated the use of on-GPU truncated signed distance func-
tion (TSDF) volumes, many researchers have expanded on and refined the ap-
proach.30–36 We highlight 2 recent examples, both capable of extended model re-
construction (i.e., a larger volume than can fit in GPU memory) and both utilizing
full RGB-D frame information.

ElasticFusion37 computes a dense surfel model of environments, notably without
using pose graph optimization. Instead, the system relies on frequent registration
with both active (recently acquired and currently used for pose estimation) and in-
active (local but older observations) portions of the map, the latter reflecting loop
closures. Upon registration with inactive portions of the map, the algorithm induces
a nonrigid deformation that helps to bring that portion of the map into alignment
with the currently active version. It is this deformation process that obviates the
need for a global graph optimization phase, with the assumption that the registration
reduces the error in the model enough to not require the optimization. Indeed, the
results reported show some of the lowest reconstruction errors on popular bench-
mark datasets. However, it should be noted that they do not show spaces larger than
a large office environment (see Fig. 7 for an example), while previous approaches
such as Kintinuous33 show larger outdoor scenes and multiple indoor floors.

14

Approved for public release; distribution is unlimited.

(a)

(b)

Fig. 7 An example map (or model) produced using ElasticFusion.37 7a shows the top-down
view of the environment, while 7b shows a colored point cloud highlighting the detail captured
by the algorithm. This is representative of the dense methods described in the text; note the
differences with the map in figure 6. Reproduced from Whelan et al.37

BundleFusion38 aims to provide an all-around solution to real-time 3D reconstruc-
tion, with the unique capability of real-time frame deintegration and reintegration
in the global volumetric model. A sparse to dense local pose alignment algorithm is
used to improve the pose estimation (utilizing SIFT features for sparse correspon-
dence) between the frames, while a global optimization is performed after scanning
has ended. Like the previous approach, this algorithm produces very good dense
scene models, but suffers from 2 main limitations: scene size (or recording time)
is limited to a maximum of 20,000 frames (due the nature of their on-GPU data
structures), and they require 2 powerful GPUs in parallel to achieve real-time per-
formance, limiting application to larger robotic systems capable of carrying and
powering twin GPUs.

15

Approved for public release; distribution is unlimited.

2.3 Attributes
In this subsection, we identify salient properties of the algorithms reviewed in the
egomotion survey. Table 1 compares selected algorithms according to the following
attributes:

Input What is the input modality? ([Mono]cular camera, [Stereo] camera, [RGB-
D], [2D] LIDAR, [3D] LIDAR)

Direct Direct versus indirect parameter estimation (i.e., photometric versus geo-
metric optimization)

Dense Is the representation dense (versus sparse)?

Mapping Does the system generate maps?

Loop Closing Does the method handle place recognition for closing loops (revis-
ited locations) in maps?

Known Scale Does the method product maps with known scale (related to sensor
modality)?

Persistent Can the existing implementation store new maps, and load and modify
previously generated maps?

GPU Does the algorithm utilize/require a GPU?

Scalability Color saturation represents a comparative and qualitative estimation of
the scalability of the algorithm.

Code Do the authors make source code available?

16

Approvedforpublicrelease;distributionisunlimited.

Table 1 An overview of selected ego-motion algorithms reviewed in this section and their attributes.

Inpu
t

Dire
ct

Dens
e

Map
ping

Loop
Clos

ing
Know

n Sca
le

Pers
isten

t
GPU Scala

bility
Code

viso28 Stereo 7 7 7 7 3 7 7 3

DVO11 RGB-D 3 3 7 7 3 7 7 3

LOAM12 2D/3D 7 7 3 7 3 7 7 3a
vLOAM13 2D/3D + Mono 7 7 3 7 3 7 7 7

SDVO18 Mono 3 3b 7 7 7 7 7 7

SVO19 Mono 3c 7 7 7 7 7 7 3

DSO5 Mono 3 7 7 7 7 7 7 3

SLSD-SLAM22 Stereo 3 3 3 3 3 7 7 7

LSD-SLAM23 Mono 3 3 3 3 7 7 7 3

RGBD-Mapping24 RGB-D 7 7 3 3 3 7 7 7

ORB-SLAM226 RGB-D or Stereo or Mono 7 7 3 3 3 3 7 3

ORB-SLAM27 Mono 7 7 3 3 3 7 7 3

KinectFusion28,29 RGB-D 3 3 3 7 3 7 3 7d
VolRTM30 RGB-D 3 3 3 7 3 7 7 3

PatchVol31 RGB-D 7 3 3 3 3 7 3 7

Kintinuous32,33 RGB-D 3 3 3 7 3 7 3 3

HDRFusion35 RGB-D 3 3 3 7 3 7 3 3

ElasticFusion37 RGB-D 3 3 3 7 3 7 3 3

BundleFusion38 RGB-D 3 3 3 7 3 7 3 3

a There are forked repositories, but the original has been removed.
b Only image regions with strong gradient in the motion direction are used.
c Semi-direct: direct methods are used for motion estimation, but features are extracted for keyframes and used for bundle adjustment.
d KinectFusion does not seem to have the original MS code published, but there is at least one open source implementation available through

the Point Cloud Library (PCL).

17

Approved for public release; distribution is unlimited.

2.4 Challenges
These sections have covered the state of the art in ego-motion estimation, and map-
ping algorithms for a variety of tasks. Some of them perform very well in the envi-
ronments (or datasets) they are tested in, but our primary concern is how they will
perform in the context of a continuous object learning system. Our view of COLs
place them along with other “life-long” learning systems; these are systems that are
meant to learn incrementally and adapt online over long periods of time. How will
ego-motion estimation and mapping scale to handle experiences that range over
larger and larger distances and more complicated, unstructured terrain? This sec-
tion highlights some of the challenges we see when considering the integration of
ego-motion estimation for a continuous object learner.

Many existing ego-motion algorithms can run continuously, specifically those based
on visual odometry, providing information about motion within the local environ-
ment. However, the longer they run, the larger the pose error relative to ground truth
will be without measuring:q against some external source. We take the position that
objects are not independent of their context (i.e., where they are, how they are used,
and their relationship with other nearby objects). Therefore, it is important to place
objects within an environmental context so they can be reobserved with confidence.
Accurate local metric representations can provide this confidence, and visual odom-
etry methods without this kind of mapping capability may not suffice.

SLAM, on the other hand, may provide the facilities needed to produce accurate
local maps (see examples of this in section 2). However, many of these algorithms
operate indoors (due to sensor or memory limitations) or on city streets; while they
may be cluttered and complex, there is still significant structure in the environment.
Army systems meant to operate in a variety of environments may need to adapt to
unstructured environments (jungles or forests), or environments with few obvious
features (like underground tunnels and sewers). Since we have seen no evidence of
SLAM being evaluated in arbitrary environments, it is hard to predict how these
algorithms will generalize to these situations.

From the perspective of a life-long COL, we predict things will go one of 2 ways:
long-term mapping and localization (1) with accurate local metric representations,
or (2) without accurate local metric maps. It is relatively clear how objects can be
contextually represented in the case of accurate local maps (1), but we then face

18

Approved for public release; distribution is unlimited.

the following challenges: How does a robot recognize places when they are not
exactly the same as the original observation? How can the map adapt over time to
changes in object position and lighting? How can these local maps be effectively
stored and retrieved? Long-term localization and mapping is a field in itself,39–46

and while it is outside the overall scope of our current work, it is relevant to the
effective functioning of future embodied systems aiming for long-term operation in
many different environments.

On the other hand, it may be possible to represent objects in context without rep-
resenting them in a larger metric space, as in case (2). In this case, relative spa-
tial relationships could be stored for object instances, while the global pose of the
instance itself is much less important (or unknown). This implies that object in-
stance recognition would become more important than ego-motion estimation over
longer time periods, since it would be required to aid in localization. This approach
is more closely related to human cognitive mapping, which focuses on significant
landmarks and their inter-relationships over direct metric representations. Unfor-
tunately, many existing robotic algorithms assume metric representations for plan-
ning, and combining the capabilities of topological and metric mapping to simul-
taneously support a continuous object learner and existing planning algorithms is a
new research area.

Recognizing and handling dynamic objects and environments are particularly im-
portant for COLs. Unfortunately, many VO and SLAM algorithms do not support
dynamic objects effectively. For example, KinectFusion and other TSDF-based al-
gorithms rely on the stability of surfaces in the map volume to integrate enough
values to represent the surface. A dynamic object moving through the map volume
will therefore not create a surface. DynamicFusion47 does handle dynamic objects,
but ignores the environment in the process. It is not immediately clear how to gen-
erate and represent a static map with dynamic objects, but it will probably rely on a
careful combination of the existing approaches and a flexible world representation.

3. Brief Survey: Tracking
In this section, we review the main approaches to tracking objects using visual sen-
sors. We survey motion-based tracking, model-free tracking, and for completeness,
model-based tracking. Following the surveys, we provide a break-down of the at-
tributes distinguishing selected algorithms and then discuss the challenges we may

19

Approved for public release; distribution is unlimited.

face when integrating object tracking into a continuous object learner.

3.1 Motion-Based Tracking
One of the most intuitive methods to identify objects to track is motion detection.
For a mobile robot, the problem is more difficult since motion detection for external
objects must occur while the robot itself is in motion; therefore, we expect ego-
motion estimation to be combined with motion-based object-tracking for online
learning systems.

In one of the few works to address both ego-motion and tracking, Wang et al.4

jointly estimate sensor motion and dynamic object motion in a Bayes filter frame-
work using an Extended Kalman Filter. Since the application is target tracking for
autonomous driving applications using a planar 2D laser scanner, tracking and mo-
tion estimates are members of the SE(2) group (thus assuming planar motion). The
state is defined as x = [xs,xT,xb,xp,xC], where xs is the sensor pose in fixed
(world) frame coordinates, xT is the collection of motion states for each currently
tracked object in world frame coordinates, xb is the collection of 2D laser scan
points representing the static background model in world frame coordinates, xp

is the set of collections of points representing each dynamic tracked object in the
object’s reference frame, and xC is the transform between the sensor and vehicle
frame. Target tracks are either added to or subtracted from the state dynamically de-
pending on how well new laser data agree with the target’s predicted location. Data
association takes place by segmenting the laser scans into distinct clusters, then
labeling the cluster as static background or dynamic object using ICP. Due to the
simplified SE(2) assumptions, the tracker is robust and is capable of dynamically
tracking multiple moving objects, but further work would be required to extend the
tracking algorithm 3D point clouds and SE(3) motion.

Ondruska et al.48,49 use a recurrent neural network (RNN) to both track and clas-
sify objects in SE(2). The approach uses motion cues to segment, track, and la-
bel moving objects in the environment with a static 2D laser scanner. The algo-
rithm is trained to predict the values of a future laser scan xt+1 given previous data
x1, x2, . . . , xt. While the input to the algorithm is only a single occupancy grid
computed from the laser scan, the RNN implicitly learns to model historical depen-
dencies in the input data. This allows for unsupervised training, since the learning
signal is just the difference between the predicted laser scan values and the actual

20

Approved for public release; distribution is unlimited.

values encountered at time t+ 1. The approach can even estimate a track through a
full occlusion in contrast with many tracking algorithms that are unable to continue
an existing track after the target disappears from view. The algorithm was tested us-
ing static laser scanners, thus limiting its value to a mobile autonomous system, and
it is unknown whether such performance could be learned with a similar approach
on a mobile platform.

Held et al.50,51 present an algorithm using annealed dynamic histograms to achieve
anytime tracking of dynamic objects using depth, color, and inertial data. Anytime
tracking guarantees the availability of a tracking estimate on-demand by sampling
a search space in a coarse to fine fashion during optimization, allowing the state
of a live mission to determine when to request (or demand) an update. The al-
gorithm samples the parameter space with incrementally increasing resolution for
optimization, finding progressively more accurate estimates over time. The simu-
lated annealing algorithm, illustrated in Fig. 8, is a heuristic-based global search
that attempts to find the best approximate global extremum versus a precise local
extremum. Thus, the expectation in this algorithm is that annealing will provide a
coarse estimate of the global optimum rather than a finer estimate at a local opti-
mum.

Fig. 8 Visual representation of simulated annealing algorithm for anytime optimization. From
left to right, the parameter grid is first coarsely sampled and quickly optimized, followed by
optimizations with successively higher resolution sampling to improve accuracy. Reproduced
from Held et al.51

3.2 Model-Free Tracking
Object tracking using visual sensors, primarily camera sensors, is a well-studied
field, as Smeulders et al.52 describe in a recent survey. As a result of the commu-
nity’s interest in visual object tracking, competitions are held each year to identify
the most accurate and robust tracking implementations.

Over recent competitions organized by Kristan et al.,53,54 the highest-performing

21

Approved for public release; distribution is unlimited.

model-free algorithms are either based on discriminative correlation filters (DCFs)
or deep neural networks (DNNs)—in particular convolutional neural networks (CNNs)
or RNNs.

Bolme et al.55 first propose using DCF to train a simple detector online with few
training examples, using an efficient approach for image correlation. The DCF algo-
rithm learns to classify a target from the background by training a sliding window
filter to identify the location of the maximum correlation between the input and
filter. Algorithmic efficiency is achieved by leveraging the relationship between cir-
cular correlation and discrete Fourier transforms (DFTs), which is given as

F(f ⋆ h) = F(f)⊙F∗(h), (3)

where F∗(h) denotes the complex conjugate of the Fourier transform of filter h,
f ⋆h is the circular correlation between input f and filter h, and F(f)⊙F∗(h) is the
element-wise multiplication of the Fourier transforms. The filter is initialized from
a set of training patches in the first frame of a tracking sequence, where the training
patches include the labeled target region as well as random affine transformations
of the target region. In subsequent frames, the algorithm estimates the location of
the target as that which maximizes the correlation, then updates the filter (often with
weighted averaging) to include the new appearance of the target. The optimization
is formulated as

min
ĥ∗

∑
i

|f̂i ⊙ ĥ∗ − ĝi|2, (4)

where f̂i := F(fi), the circumflex (or hat) denotes the Fourier transform of a func-
tion, subscript i indicates the training sample, and gi is the goal output that is re-
quired to generate the training signal. The form of gi is a design choice, and is
typically selected to be a compact 2D Gaussian with a peak centered on the track-
ing target. The final formulation of the DCF reduces to

ĥ∗
i =

ĝ ⊙ f̂ ∗
i

f̂i ⊙ f̂ ∗
i + λ

, (5)

where λ is a regularization term.

Since DCF-based algorithms formulate the problem as a circular correlation be-
tween filter and input, they are fundamentally susceptible to horizontal and vertical

22

Approved for public release; distribution is unlimited.

aliasing. To account for this problem, Bolme et al.55 use a cosine window to pre-
process input patches to emphasize locations near the center of the target. Danelljan
et al.56 redefine the optimization formulation to replace the original regularization
term with a more general Tikhonov regularization. The regularization weights de-
termine the importance of the filter coefficients depending on the filter’s spatial

location. Filter coefficients far outside the target region are penalized and thus also
emphasize locations near the center of the target. Fernandez et al.57 perform zero-
padding on the input and force the larger filter tail to be zero during training, thereby
effectively converting the problem from one of circular convolution to one of linear
convolution while still employing the DFT for optimization.

Additional work has generalized the DCF formulation to support learning multi-
dimensional filters from multidimensional input descriptors, such as histogram of
oriented gradientss (HOGs),58 color statistics,59 and CNN features.60,61 To support
target scale change over time, which is a problem for traditional DCF approaches,
algorithms can perform regression on bounding box corner points62,63 or can learn
scale explicitly.64,65 The creation of Kernelized Correlation Filters (KCFs)66 demon-
strates that, by representing the input using circulant matrices, kernel functions can
be used to improve training performance without any additional runtime cost, and
that the kernel-based problem formulation yields the same analytic solution as the
original DCF formulation. Finally, Danelljan et al.67 present a correlation filter ex-
tension that implicitly learns a continuous convolution operator, thereby allowing
them to perform DCF operations on multiresolution feature maps (e.g., the outputs
of various layers of a CNN).

Inspired by their recent success in object detection, deep networks have become
popular approaches to visual object tracking. CNNs are known to produce increas-
ingly discriminative semantic representations at deeper network layers; however,
the receptive fields at these layers are also large, which may harm localization
accuracy. Since tracking is largely focused on target localization accuracy, lower
layers are often employed due their smaller receptive field sizes.60,68 To learn gen-
eral, class-agnostic similarity functions, siamese networks are trained on consecu-
tive frames for single and multiobject tracking.69,70

Held et al.63 train a CNN on pairs of consecutive images in a sequence, using data
augmentation to train on large single-image datasets such as ImageNet. The net-

23

Approved for public release; distribution is unlimited.

work implicitly learns both the output tracking bounding box and a motion model
that includes scale. To show adequate generalization performance, the authors use
disjoint training and test datasets.

The tree-based CNN approach of Nam et al.71 mitigates the catastrophic forgetting
problem of traditional deep networks72 by maintaining multiple CNNs in a tree
structure. The CNNs can be run independently or chained together, so that any
newly created CNNs do not actually overwrite previously learned parameters of
existing CNN.

Multidomain networks (MDNets)73 pose the tracking problem as learning across a
set of distinct domains, where each tracking sequence in the training set represents
a separate domain. The resulting architecture learns a standard CNN that produces
an encoded representation of the input image. The output parameters are copied as
input into a fully connected layer made up of k parallel domain branches, where k

is the number of training sequences. Each sequence is trained exclusively during a
single iteration of Stochastic Gradient Descent. During testing, the domain branches
are discarded and replaced with a single branch representing the test domain, which
is then fine-tuned online. A diagram of the architecture is shown in Fig. 9.

Fig. 9 Architecture diagram for multidomain deep networks for tracking. Each training se-
quence represents a different domain, with associated parameters fc61 to fc6k for k sequences.
Reproduced from Nam et al.73

Valmadre et al.74 extend the unification of DCF and DNN to produce a fully inte-
grated deep network, shown in Fig. 10, that exhibits complementary the benefits of
both DCF and DNN. Instead of using CNN features as input to a DCF framework,
as various approaches have recently done, they interpret the correlation filter as a
differentiable function that allows it to be inserted as a layer component in a deep
network. The value is that the network and associated parameters, including those

24

Approved for public release; distribution is unlimited.

of the DCF, are jointly learned for tracking. Using a siamese network, the authors
produce a tracker that runs at a high frame rate and achieves good accuracy with a
relatively shallow network of only 2-3 layers.

Fig. 10 Integration of a correlation filter layer into a deep network architecture. The correla-
tion filter provides fast tracking evaluation over a sample image, while the deep architecture
allows all parameters to be learned jointly. Reproduced from Valmadre et al.74

Depth is an important modality for tracking as well as segmentation, since it can
directly measure target scale. Song et al.75 create a new tracking dataset that can be
used to test RGB, RGB-D, or 3D tracking algorithms, and provide both RGB-D and
3D baseline algorithms with occlusion handling. Hannuna et al.76 extend the KCF
to include depth, leveraging depth to detect occlusion and scale changes to improve
performance while still running at real time. Li et al.77 present a model-free tracker
using RGB-D input data. The algorithm does not require human input to determine
the objects to track; instead, it performs a 3D cluster-based segmentation to estimate
the objects, thus tracking is performed on all segments in a simple tabletop scene.

3.3 Model-Based Tracking
While model-based tracking can be applied to both single and multiobject tracking,
we will focus on recent multiobject trackers that make use of pre-trained object
models. While model-based trackers have the drawback of requiring known objects
ahead of time, they have practical advantages over model-free trackers, such as the
ability to dynamically create and destroy object tracks. The challenge of multiobject
tracking is to model all object tracks simultaneously, requiring disambiguation as
multiple objects interact with overlapping tracks. As with single object tracking,
multiple-object tracking is an active research area (see Luo et al.78 for a review),
with benchmark competitions such as the multiobject tracking challenge (MOT79)

25

Approved for public release; distribution is unlimited.

enabling direct comparisons.*

Originally proposed by Reid et al.,81 Multiple Hypothesis Tracking (MHT) is an
algorithm that creates a series of trees representing potential tracks for each ob-
ject. An advantage of this approach is that the trees can recover from temporarily
incorrect tracks by preserving multiple hypothesized states over time. As new in-
formation is accumulated, better track estimates can be achieved using the history
of previous frames. The level of each tree corresponds to a frame, and since each
frame can add multiple potential states to a tree, the trees tend to grow very large
without aggressive pruning techniques. Also, at the time of the original publica-
tion, poor object detectors and descriptors caused unreliable track estimates. Kim
et al.82 achieve state-of-the-art results using the Maximum Weighted Independent
Set method to determine final track hypotheses, and CNN descriptors for appear-
ance similarity scores.

Sadeghian et al.70 construct a stacked series of RNNs to model temporal depen-
dencies across multiple cues. Each cue (appearance, motion, interaction) is itself
an RNN, specifically a long-short-term memory (LSTM) network. LSTM83,84 net-
works are an extension of a typical RNN designed to account for the vanishing gra-
dient problem that plagued early multilayer RNNs,85 yet they are still able to learn
long-term dependencies using explicit gates that control how quickly and often pre-
vious information is forgotten. The outputs of the cue networks are concatenated
and input to another LSTM that outputs the similarity between previous known tar-
gets to all current detections. During an ablation study, the appearance cues (where
appearance is encoded using CNN descriptors which are input to the LSTM) are
shown to be the most important, while the combination of the 3 cues gives the best
overall performance.

Similarly, Milan et al.80 employ a sequence of RNNs to efficiently perform multi-
object tracking. The tracking problem is decoupled into prediction/update phases,
where prediction incorporates the motion model and update performs data associa-
tion over time. While simple RNNs can perform the prediction component, the data
association and state update are performed using a series of LSTMs, where each

*As pointed out by Milan et al.,80 an issue with the MOT competition is that authors can either
use predefined or custom object detectors. This effectively renders direct comparison of the tracking
algorithms meaningless, since performance could be affected more by custom object detectors than
the tracking algorithms themselves. Instead, only those algorithms using predetected objects can be
meaningfully compared.

26

Approved for public release; distribution is unlimited.

output encodes the probability of an existing target matching a particular object in
the current frame. The architecture diagram of the system is shown in Fig. 11.

Fig. 11 Architectural diagram for multi-object tracking using RNNs and stacked LSTMs. The
RNNs are used to predict and manage tracks over time, while a sequence of LSTMs are used
to perform data association between current observations and previously tracked objects. Re-
produced from Milan et al.80

Levinkov et al.86 develop a more general approach to 2 problems that are pervasive
in computer vision. The first is the graph decomposition problem, where a graph is
segmented into subgraphs such that each subgraph is connected. The second prob-
lem is that of node labeling, or assigning a class label to each node in a graph.
These problems often occur together in practice, and the authors develop an algo-
rithm called the minimum cost node labeling lifted multicut problem (NL-LMP),
which generalizes separate approaches to each problem into a single framework.
The authors analyze performance on the tasks of articulated human body pose esti-
mation, multi-instance semantic segmentation, and multiobject tracking, where they
demonstrate comparable performance with other state-of-the-art algorithms.

In 3D, Ren et al.87,88 create a multiobject tracker where models are specified with
signed distance function (SDF). While being a model-based tracking implemen-
tation, the algorithm also adapts the appearance model online to account for the
specific object instance being tracked. The technique uses a generative probabilistic
model that incorporates the SDF and color data with a latent variable determining
if the input sample is a foreground or background instance, and can disambiguate
targets of the same class occluding one another.

Choi et al.89 employ particle filters to estimate the pose of known objects using
RGB-D sensors. The tracking problem is posed as the sequential determination of
the poses of known objects, where the poses are represented as weighted particles.

27

Approved for public release; distribution is unlimited.

The representation combines the point coordinates of the object as well as the color
and local normal estimates. Using GPU acceleration, the authors show accuracy and
speed improvements (for less than 3200 particles) over a comparable Point Cloud
Library (PCL)90 tracking implementation.

3.4 Attributes
In this subsection, we identify salient properties of the algorithms reviewed in the
object tracking survey. Table 2 compares selected algorithms according to the fol-
lowing attributes:

Type High-level approach ([Model-based], [Model-free], [Motion-based])

Initialization Initial target identification source ([Manual], [Motion], [Clustering],
[Detector])

Input What is the input sensing modality? ([Mono]cular image, [RGB-D], [3D]
LIDAR, [2D] LIDAR)

Representation How is the raw input represented for a tracking algorithm? ([HOG],
[CNN], [Raw] input, [Motion], [3D] features, [Normals], etc.)

Algorithm Algorithmic approach ([CNN], [RNN], [Siamese] network, [Corr]elation
filter, [Bayes] filter, etc.)

Multiobject Can the algorithm track multiple objects simultaneously?

Scale-adaptive Does the tracking boundary dynamically update scale and aspect
ratio?

Code Do the authors make source code available?

Efficiency Approximate estimate of relative efficiency of algorithm.

28

Approvedforpublicrelease;distributionisunlimited.

Table 2 An overview of selected tracking algorithms reviewed in this section and their attributes.

Type Initia
lizati

on

Inpu
t

Repr
esen

tatio
n

Algo
rithm

Mult
i-Ob

ject
Scale

-Ada
ptive

Code Effic
iency

GOTURN63 Model-free Manual Mono CNN CNN 7 3 3

KCF66 Model-free Manual Mono HOG Corr 7 7 3

SRDCF56,60 Model-free Manual Mono HOG/CNNa Corr 7 3 3

DS-KCF76 Model-free Manual RGB-D HOG+Depth Corr 7 3 3

TCNN71 Model-free Manual Mono CNN CNN 7 3 3

MOSSE55 Model-free Manual Mono Raw pixels Corr 7 7 3

Staple59 Model-free Manual Mono HOG+ColorHist Hybridb 7 3 3

Anytime3D50,51 Motion-based Clustering Mono+3D Color+3D+Motion Bayes 3 3 3

MDNet73 Model-free Manual Mono CNN CNN 7 3 3

C-COT67 Model-free Manual Mono CNN Corr 7 3 3

SiamFC69 Model-free Manual Mono CNN Siamese 7 3 3

PMOT77 Model-free Clustering RGB-D JCSDc Bayes 3 3 3

RGBDOcc75 Model-free Manual RGB-D HOG/3D Variousd 7 3 3

DynTrack4 Motion-based Motion 2D Raw scans+Motion Bayes 3 3 7

RNNScan48,49 Motion-based Motion 2D Raw scans RNN 3 3 3

CFNet74 Model-free Manual Mono CNN Siamese + Corr 3 3 3

MHT82 Model-based Detector Mono CNN Multi-HypTree 3 3 3

CueRNN70 Model-based Detector Mono CNN+Motion+Interaction RNN 3 3 7

MTT-RNN80 Model-based Detector Mono LSTM RNN 3 3 3

NL-LMP86 Model-based Detector Mono Detection locations Lifted MultiCut 3 3 3

SDF-Track87,88 Model-based Detector RGB-D 3D SDF SDF Matching 3 3 3

RGBD-PF89 Model-based Detector RGB-D Color+3D+Normals Bayes 3 3 7

a The original SRDCF work employs HOG features, the subsequent formulation uses CNN features.
b Two independent optimizations occur, one using correlation filters, the other using linear regression.
c Joint color-spatial descriptor, approximates the probability density of a point in a 3D+color space.
d The focus of the paper is the creation of an RGB-D dataset; the authors develop various 2D and 3D baseline algorithms.

29

Approved for public release; distribution is unlimited.

3.5 Challenges
We assert that the design of a continuous object learner implies the use of a primi-
tive object tracker (i.e., a model-free or motion-based tracker), since we do not know
about all possible object classes ahead of time. However, model-based object track-
ers that are trained for specific object classes tend to have better performance when
tracking known object classes. The challenge is how to improve the performance of
the primitive trackers without incorporating class-specific information. On the other
hand, it may be possible to merge primitive tracking techniques with model-based
trackers; the challenge in this case includes not only the communication between
the algorithms, but how one can scale the performance of a model-based tracker to
the many classes a COL may be expected to learn.

When considering model-free trackers, manual object initialization is not a realis-
tic assumption for an autonomous mobile robot. Instead, object motion is a natural
choice for a category-agnostic tracking cue. For sensors that are still or do not move
much, as is the case with most visual object tracking datasets, it is fairly straight-
forward to identify moving objects. For a mobile system, however, the sensor will
move throughout the scene, with potentially large changes in perspective making
technique like background substraction infeasible. Therefore, algorithms must be
able to model either ego-motion (or receive it from an estimation algorithm) or
the static and dynamic environment components, which are complementary tasks.
This poses challenges for otherwise high-performing approaches trained on static or
nearly static sensor streams, such as most discriminative correlation filters or deep
learning approaches.

Finally, tracking multiple objects poses its own set of challenges. One may con-
struct either a single model capable of tracking all moving objects, or dynamically
instantiate multiple single-object trackers. In either case, trackers must handle oc-
clusions, ideally even total occlusions, and must resolve ambiguity when multiple
tracked targets interact or cross paths. While existing trackers struggle with these
challenges, a successful multiobject tracking algorithm will improve the perfor-
mance of downstream components such as instance recognition.

30

Approved for public release; distribution is unlimited.

4. Conclusion
In the Introduction, we argue that ego-motion estimation and object tracking are
essential components for a continuous object learner. They provide continuity of
the incoming sensor data in order to make sense of the world; otherwise it would
be very difficult to relate sensor data at one time instant to data at another time.
Having briefly surveyed state-of-the-art algorithms in VO, SLAM, and several ap-
proaches to object tracking, we then discussed the challenges of integrating these
into a continuous object learning system.

A continuous object learner will need to initially tackle the hard problems of inte-
grating tracking systems with ego-motion to better handle dynamic environments;
this is a requirement to learn from experience in the real world, and it has not been
thoroughly addressed in the research literature thus far. Enabling longer-term oper-
ation, especially in novel, unstructured environments, requires research in scaling
maps or even operating without the traditional metric notion of a map. In either
case, we must also research methods of supporting contextual object representation
within these maps.

Finally, building a full continuous object learning system should provide opportu-
nities to leverage capabilities across various components; however, this too poses
many challenges. For example, how should an ego-motion algorithm work with an
object tracking component; can they be de-coupled, or do they need to share data
structures? Is it possible that ego-motion estimation or object tracking can bene-
fit from segmentation or instance recognition (and what information should they
share) or vice versa? These are just some of the questions that must be addressed in
future research toward continuous object learning systems.

31

Approved for public release; distribution is unlimited.
32

5. References

1. Fetsch CR, Turner AH, DeAngelis GC, Angelaki DE. Dynamic reweighting of
visual and vestibular cues during self-motion perception. Journal of
Neuroscience. 2009;29(49):15601–15612.

2. Koffka K. Principles of Gestalt psychology. New York (NY): Harcourt, Brace,
& World; 1935.

3. Zhu G, Porikli F, Li H. Tracking randomly moving objects on edge box
proposals. Ithaca (NY): arXiv.org, Cornell University Library; 2015. arXiv:
1507.08085 [cs.CV].

4. Wang DZ, Posner I, Newman P. Model-free detection and tracking of dynamic
objects with 2D lidar. The International Journal of Robotics Research.
2015;34(7):1039–1063.

5. Engel J, Koltun V, Cremers D. Direct sparse odometry. Ithaca (NY): arXiv.org,
Cornell University Library; 2016. arXiv: 1607.02565.

6. Lowe DG. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision. 2004;60(2):91–110.

7. Rublee E, Rabaud V, Konolige K, Bradski G. ORB: an efficient alternative to
SIFT or SURF. In: Computer Vision (ICCV), 2011 IEEE International
Conference on; p. 2564–2571.

8. Geiger A, Ziegler J, Stiller C. Stereoscan: dense 3D reconstruction in realtime.
In: Intelligent Vehicles Symposium (IV), 2011 IEEE; p. 963–968.

9. Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? The
KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision
and Pattern Recognition; p. 3354–3361.

10. Scaramuzza D, Fraundorfer F. Visual Odometry [Tutorial]. IEEE Robotics &
Automation Magazine. 2011;18(4):80–92.

11. Steinbrucker F, Sturm J, Cremers D. Real-time visual odometry from dense
RGB-D images. In: Computer Vision Workshops (ICCV Workshops), 2011
IEEE International Conference on; p. 719–722.

12. Zhang J, Singh S. LOAM: Lidar odometry and mapping in realtime. In:
Robotics: Science and Systems Conference (RSS 2014).

Approved for public release; distribution is unlimited.
33

13. Zhang J, Singh S. Visual-lidar odometry and mapping: low-drift, robust, and
fast. In: 2015 IEEE International Conference on Robotics and Automation
(ICRA); IEEE; 2015. p. 2174–2181.

14. Velodyne LiDAR I. 2017 [accessed 2017 Sep 22]. http://velodynelidar.com/.

15. Zhang J. loam_continuous - ROS Wiki. 2017 [accessed 2017 Sep 22].
http://wiki.ros.org/loam_continuous.

16. Dunkley O, Engel J, Sturm J, Cremers D. Visual-inertial navigation for a
camera-equipped 25g nano-quadrotor. In: IROS2014 aerial open source
robotics workshop; p. 2.

17. Schöps T, Engel J, Cremers D. Semi-dense visual odometry for AR on a
smartphone. In: Mixed and Augmented Reality (ISMAR), 2014 IEEE
International Symposium on; IEEE; 2014. p. 145–150.

18. Engel J, Sturm J, Cremers D. Semi-dense visual odometry for a monocular
camera. In: The IEEE International Conference on Computer Vision (ICCV);
2013.

19. Forster C, Pizzoli M, Scaramuzza D. SVO: fast semi-direct monocular visual
odometry. In: Proc IEEE Intl Conf on Robotics and Automation; p. 15–22.

20. Weiss S. Dealing with scale; 2014 [accessed 2017 Sep 20].
http://frc.ri.cmu.edu/~kaess/vslam_cvpr14/media/VSLAM-Tutorial-CVPR14-
A21-DealingWithScale.pdf.

21. Cadena C, Carlone L, Carrillo H, Latif Y, Scaramuzza D, Neira J, Reid I,
Leonard JJ. Past, present, and future of simultaneous localization and mapping:
toward the robust-perception age. IEEE Transactions on Robotics.
2016;32(6):1309–1332.

22. Engel J, Stückler J, Cremers D. Large-scale direct slam with stereo cameras.
In: Proceedings of the 2015 IEEE International Conference on Intelligent
Robots and Systems (IROS); 2015. p. 1935–1942.

23. Engel J, Schöps T, Cremers D. LSD-SLAM: large-scale direct monocular
SLAM. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T, editors. Computer
Vision–ECCV 2014; Cham (Switzerland): Springer; 2014. p. 834–849.
(Lecture notes in computer science; vol. 8690).

24. Henry P, Krainin M, Herbst E, Ren X, Fox D. RGB-D mapping: using kinect-
style depth cameras for dense 3d modeling of indoor environments. The
International Journal of Robotics Research. 2012;31(5):647–663.

Approved for public release; distribution is unlimited.
34

25. Pfister H, Zwicker M, van Baar J, Gross M. Surfels: surface elements as
rendering primitives. In: Proceedings of the 27th Annual Conference on
Computer Graphics and Interactive Techniques; (SIGGRAPH ’00) New York
(NY): ACM Press; 2000. p. 335–342.

26. Mur-Artal R, Montiel JMM, Tardos JD. ORB-SLAM: a versatile and accurate
monocular SLAM system. IEEE Transactions on Robotics. 2015;31(5):1147–
1163.

27. Mur-Artal R, Tardos JD. ORB-SLAM2: an open-source SLAM system for
monocular, stereo and RGB-D cameras. Ithaca (NY): arXiv.org, Cornell
University Library; 2016. arXiv:1610.06475.

28. Newcombe RA, Izadi S, Hilliges O, Molyneaux D, Kim D, Davison AJ, Kohli
P, Shotton J, Hodges S, Fitzgibbon A. KinectFusion: Real-time dense surface
mapping and tracking. In: Mixed and Augmented Reality (ISMAR), 2011 10th
IEEE International Symposium on; p. 127–136.

29. Izadi S, Kim D, Hilliges O, Molyneaux D, Newcombe R, Kohli P, Shotton J,
Hodges S, Freeman D, Davison A, et al. KinectFusion: real-time 3D
reconstruction and interaction using a moving depth camera. In: Proceedings
of the 24th annual ACM symposium on User interface software and
technology; New York (NY): ACM; 2011. p. 559–568.

30. Steinbrücker F, Sturm J, Cremers D. Volumetric 3D mapping in real-time on a
CPU. In: Robotics and Automation (ICRA), 2014 IEEE International
Conference on; IEEE; 2014. p. 2021–2028.

31. Henry P, Fox D, Bhowmik A, Mongia R. Patch volumes: segmentation-based
consistent mapping with RGB-D cameras. In: 2013 International Conference
on 3D Vision - 3DV; IEEE; 2013. p. 398–405.

32. Whelan T, McDonald J, Kaess M, Fallon M, Johannsson H, Leonard J.
Kintinuous: Spatially extended kinect fusion. In: Robotics, Science and
Systems.

33. Whelan T, Johannsson H, Kaess M, Leonard JJ, McDonald J. Robust tracking
for real-time dense RGB-D mapping with kintinuous. DSpace@MIT; 2012.
Technical No.: MIT-CSAIL-TR-2012-031 [accessed 2017 June 28].
http://hdl.handle.net/1721.1/73167.

34. Whelan T, Kaess M, Johannsson H, Fallon M, Leonard JJ, McDonald J. Real-
time large-scale dense RGB-D SLAM with volumetric fusion. The
International Journal of Robotics Research. 2015;34(4-5):598–626.

Approved for public release; distribution is unlimited.
35

35. Li S, Handa A, Zhang Y, Calway A. HDRFusion: HDR SLAM using a low-
cost auto-exposure RGB-D sensor. Ithaca (NY): arXiv.org, Cornell University
Library; 2016. arXiv:1604.00895.

36. Lee SO, Lim H, Kim HG, Ahn SC. RGB-D fusion: Real-time robust tracking
and dense mapping with RGB-D data fusion. In: Intelligent Robots and
Systems (IROS 2014), 2014 IEEE/RSJ International Conference on; IEEE;
2014. p. 2749–2754.

37. Whelan T, Leutenegger S, Salas-Moreno RF, Glocker B, Davison AJ.
ElasticFusion: Dense SLAM without a pose graph. Proc Robotics: Science and
Systems; 2015; Rome, Italy.

38. Dai A, Nießner M, Zollhöfer M, Izadi S, Theobalt C. BundleFusion: Real-time
globally consistent 3D reconstruction using on-the-fly surface re-integration.
Ithaca (NY): arXiv.org, Cornell University Library; 2016. arXiv:1604.01093.

39. Konolige K, Bowman J. Towards lifelong visual maps. In: Intelligent Robots
and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on; IEEE;
2009. p. 1156–1163.

40. Biswas J, Veloso MM. Localization and navigation of the cobots over long-
term deployments. The International Journal of Robotics Research.
2013;32(14):1679–1694.

41. Churchill W, Newman P. Experience-based navigation for long-term
localisation. The International Journal of Robotics Research.
2013;32(14):1645–1661.

42. Johannsson H. Toward lifelong visual localization and mapping [thesis].
[Cambridge (MA)]: Massachusetts Institute of Technology; 2013.

43. Tipaldi GD, Meyer-Delius D, Burgard W. Lifelong localization in changing
environments. The International Journal of Robotics Research.
2013;32(14):1662–1678.

44. Beall C, Dellaert F. Appearance-based localization across seasons in a metric
map. 6th PPNIV; 2014; Chicago, IL.

45. Mühlfellner P. Lifelong visual localization for automated vehicles. [PhD
thesis]. [Sweden]: Halmstad University; 2015.

https://arxiv.org/find/cs/1/au:+Niessner_M/0/1/0/all/0/1

Approved for public release; distribution is unlimited.
36

46. Krajnik T, Pulido Fentanes J, Hanheide M, Duckett T. Persistent localization
and life-long mapping in changing environments using the frequency map
enhancement. In: 2016 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS); Daejeon, Korea: IEEE; 2016.

47. Newcombe RA, Fox D, Seitz SM. Dynamic fusion: reconstruction and tracking
of non-rigid scenes in real-time. In: Proceedings of the 2015 IEEE Conference
on Computer Vision and Pattern Recognition; 2015. p. 343–352.

48. Ondruska P, Dequaire J, Wang DZ, Posner I. End-to-end tracking and semantic
segmentation using recurrent neural networks. Ithaca (NY): arXiv.org, Cornell
University Library; 2016. arXiv:1604.05091.

49. Ondruska P, Posner I. Deep tracking: seeing beyond seeing using recurrent
neural networks. Ithaca (NY): arXiv.org, Cornell University Library; 2016.
arXiv:1602.00991.

50. Held D, Levinson J, Thrun S. Precision tracking with sparse 3D and dense color
2D data. In: Robotics and Automation (ICRA), 2013 IEEE International
Conference on; IEEE; 2013. p. 1138–1145.

51. Held D, Levinson J, Thrun S, Savarese S. Combining 3d shape, color, and
motion for robust anytime tracking. In: Proceedings of 2014 Robotics: Science
and Systems; 2014; Berkeley, CA.

52. Smeulders AWM, Chu DM, Cucchiara R, Calderara S, Dehghan A, Shah M.
Visual tracking: an experimental survey. IEEE Transactions on Pattern
Analysis and Machine Intelligence. 2014;36(7):1442–1468.

53. Kristan M, Matas J, Leonardis A, Felsberg M, Cehovin L, Fernandez G, Vojir
T, Hager G, Nebehay G, Pflugfelder R. The visual object tracking VOT2015
challenge results. In: Proceedings of the IEEE International Conference on
Computer Vision Workshops; 2015. p. 1–23.

54. Kristan M, Leonardis A, Matas J, Felsberg M, Pflugfelder R, Cehovin L, Vojir
T, Hager G, Lukezic A, Fernandez G. The visual object tracking VOT2016
challenge results. In: Proceedings of the IEEE European Conference on
Computer Vision Workshops; 2016.

55. Bolme DS, Beveridge JR, Draper BA, Lui YM. Visual object tracking using
adaptive correlation filters. In: Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on; IEEE; 2010. p. 2544–2550.

Approved for public release; distribution is unlimited.
37

56. Danelljan M, Hager G, Shahbaz Khan F, Felsberg M. Learning spatially
regularized correlation filters for visual tracking. In: Proceedings of the 2015
IEEE International Conference on Computer Vision; 2015. p. 4310–4318.

57. Fernandez JA, Boddeti VN, Rodriguez A, Kumar BVKV. Zero-aliasing
correlation filters for object recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence. 2015;37(8):1702–1715; arXiv: 1411.2316.

58. Kiani Galoogahi H, Sim T, Lucey S. Multi-channel correlation filters. In:
Proceedings of the 2013 IEEE International Conference on Computer Vision;
2013. p. 3072–3079.

59. Bertinetto L, Valmadre J, Golodetz S, Miksik O, Torr P. Staple: complementary
learners for real-time tracking. Ithaca (NY): arXiv.org, Cornell University
Library; 2015. arXiv:1512.01355 [cs].

60. Danelljan M, Hager G, Shahbaz Khan F, Felsberg M. Convolutional features
for correlation filter based visual tracking. In: Proceedings of the 2015 IEEE
International Conference on Computer Vision Workshops; 2015. p. 58–66.

61. Ma C, Huang JB, Yang X, Yang MH. Hierarchical convolutional features for
visual tracking. In: Proceedings of the 2015 IEEE International Conference on
Computer Vision; 2015. p. 3074–3082.

62. Bertinetto L, Valmadre J, Miksik O, Golodetz S, Torr P. The importance of
estimating object extent when tracking with correlation filters. 2015. Pre-print
for VOT2015.

63. Held D, Thrun S, Savarese S. Learning to track at 100 FPS with deep regression
networks. In: Leibe B, Matas J, Sebe N, Welling M, editors. European
Conference on Computer Vision; Cham (Switzerland): Springer; 2016. p. 749–
765. (Lecture notes in computer science; vol. 9905).

64. Danelljan M, Hager G, Khan FS, Felsberg M. Discriminative scale space
tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence.
2016.

65. Vojir T, Noskova J, Matas J. Robust scale-adaptive mean-shift for tracking. In:
Kämäräinen JK, Koskela M, editors. Scandinavian Conference on Image
Analysis; Berlin Heidelberg (Germany): Springer; 2013. p. 652–663. (Lecture
notes in computer science; vol. 7944).

Approved for public release; distribution is unlimited.
38

66. Henriques JF, Caseiro R, Martins P, Batista J. High-speed tracking with
kernelized correlation filters. IEEE Transactions on Pattern Analysis and
Machine Intelligence. 2015;37(3):583–596.

67. Danelljan M, Robinson A, Khan FS, Felsberg M. Beyond correlation filters:
learning continuous convolution operators for visual tracking. In: Leibe B,
Matas J, Sebe N, Welling M, editors. European Conference on Computer
Vision; Springer; 2016. p. 472–488. (Lecture notes in computer science; vol.
9909). DOI: 10.1007/978-3-319-46454-1_29.

68. Wang L, Ouyang W, Wang X, Lu H. Visual tracking with fully convolutional
networks. In: 2015 IEEE International Conference on Computer Vision
(ICCV); IEEE; 2015. p. 3119–3127.

69. Bertinetto L, Valmadre J, Henriques JF, Vedaldi A, Torr PHS. Fully-
convolutional siamese networks for object tracking. Ithaca (NY): arXiv.org,
Cornell University Library; 2016. arXiv:1606.09549 [cs].

70. Sadeghian A, Alahi A, Savarese S. Tracking the untrackable: learning to track
multiple cues with long-term dependencies. Ithaca (NY): arXiv.org, Cornell
University Library; 2017. arXiv:1701.01909 [cs].

71. Nam H, Baek M, Han B. Modeling and propagating CNNs in a tree structure
for visual tracking. Ithaca (NY): arXiv.org, Cornell University Library; 2016.
arXiv:1608.07242 [cs].

72. Goodfellow IJ, Mirza M, Xiao D, Courville A, Bengio Y. An empirical
investigation of catastrophic forgetting in gradient-based neural networks.
Ithaca (NY): arXiv.org, Cornell University Library; 2013. arXiv:1312.6211.

73. Nam H, Han B. Learning multi-domain convolutional neural networks for
visual tracking. Ithaca (NY): arXiv.org, Cornell University Library; 2015.
arXiv:1510.07945 [cs].

74. Valmadre J, Bertinetto L, Henriques JF, Vedaldi A, Torr PHS. Endto-end
representation learning for correlation filter based tracking. Ithaca (NY):
arXiv.org, Cornell University Library; 2017. arXiv:1704.06036 [cs].

75. Song S, Xiao J. Tracking revisited using RGBD camera: unified benchmark
and baselines. In: Proceedings of the 2013 IEEE international conference on
computer vision; 2013. p. 233–240.

Approved for public release; distribution is unlimited.
39

76. Hannuna S, Camplani M, Hall J, Mirmehdi M, Damen D, Burghardt T,
Paiement A, Tao L. DS-KCF: a real-time tracker for RGB-D data. Journal of
Real-Time Image Processing. 2016 [accessed 2017 Sep 19].
https://link.springer.com/article/10.1007%2Fs11554-016-0654-3.

77. Li S, Koo S, Lee D. Real-time and model-free object tracking using particle
filter with joint color-spatial descriptor. In: Intelligent Robots and Systems
(IROS), 2015 IEEE/RSJ International Conference on; IEEE; 2015. p. 6079–
6085.

78. Luo W, Xing J, Zhang X, Zhao X, Kim TK. Multiple object tracking: a
literature review. Ithaca (NY): arXiv.org, Cornell University Library; 2014.
arXiv:1409.7618 [cs].

79. Milan A, Leal-Taixe L, Reid I, Roth S, Schindler K. MOT16: A benchmark for
multi-object tracking. Ithaca (NY): arXiv.org, Cornell University Library;
2016. arXiv:1603.00831 [cs].

80. Milan A, Rezatofighi SH, Dick A, Reid I, Schindler K. Online multi-target
tracking using recurrent neural networks. Ithaca (NY): arXiv.org, Cornell
University Library; 2016. arXiv:1604.03635.

81. Reid D. An algorithm for tracking multiple targets. In: IEEE Transactions on
Automatic Control. 1979 Dec;AC-24(6);843–855.

82. Kim C, Li F, Ciptadi A, Rehg JM. Multiple hypothesis tracking revisited. In:
Proceedings of the 2015 IEEE International Conference on Computer Vision
(ICCV); (ICCV ’15)Washington, DC, USA: IEEE Computer Society; 2015. p.
4696–4704.

83. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation.
1997;9:1735–1780.

84. Greff K, Srivastava RK, Koutník J, Steunebrink BR, Schmidhuber J. LSTM: a
search space odyssey. Ithaca (NY): arXiv.org, Cornell University Library;
2015. arXiv:1503.04069 [cs].

85. Hochreiter S, Bengio Y, Frasconi P, Schmidhuber J. Gradient flow in recurrent
nets: the difficulty of learning long-term dependencies. A field guide to
dynamical recurrent neural networks. Newark (NJ): IEEE Press; 2001.

Approved for public release; distribution is unlimited.
40

86. Levinkov E, Uhrig J, Tang S, Omran M, Insafutdinov E, Kirillov A, Rother C,
Brox T, Schiele B, Andres B. Joint graph decomposition and node labeling:
problem, algorithms, applications. Ithaca (NY): arXiv.org, Cornell University
Library; 2016. arXiv:1611.04399 [cs].

87. Ren CY, Prisacariu V, Kaehler O, Reid I, Murray D. 3D tracking of multiple
objects with identical appearance using RGB-D input. In: 2014 2nd
International Conference on 3D Vision; IEEE; 2014. p. 47–54.

88. Ren CY, Prisacariu VA, Kähler O, Reid ID, Murray DW. Real-time tracking
of single and multiple objects from depth-colour imagery using 3D signed
distance functions. International Journal of Computer Vision. 2017;124(1):80–
95.

89. Choi C, Christensen HI. RGB-D object tracking: a particle filter approach on
GPU. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems; IEEE; 2013. p. 1084–1091.

90. Rusu RB, Cousins S. 3D is here: Point Cloud Library (PCL). In: Robotics and
Automation (ICRA), 2011 IEEE International Conference on; IEEE; 2011. p.
1–4.

Approved for public release; distribution is unlimited.

List of Symbols, Acronyms, and Abbreviations

2D 2-dimensional. 6, 16, 20, 22, 28

3D 3-dimensional. 3, 6–9, 11, 14–16, 20, 25, 27, 28

CNN convolutional neural network. 22–24, 26, 28

COL continuous object learner. 1–3, 5, 18, 19, 30

CVPR Computer Vision and Pattern Recognition. 11

DCF discriminative correlation filter. 22–25

DFT discrete Fourier transform. 22, 23

DNN deep neural network. 22, 24

DSO Direct Sparse Odometry. 10

DVO Dense Visual Odometry. iv, 8, 9

GPU graphics processing unit. 13–16, 28

HOG histogram of oriented gradients. 23, 28

ICP iterative closest point. 12, 20

IMU inertial measurement unit. 3, 11

IR infrared. 9

KCF Kernelized Correlation Filter. 23, 25

LIDAR light detection and ranging. 10, 16, 28

LSTM long-short-term memory. iv, 26, 27

MDNet multidomain network. 24

NL-LMP node labeling lifted multicut problem. 27

41

Approved for public release; distribution is unlimited.

ORB oriented FAST and rotated BRIEF. 6, 13

PCL Point Cloud Library. 28

RGB red, green, blue. 12, 25

RGB-D red, green, blue and depth. 6, 8, 9, 11–14, 25, 27

RNN recurrent neural network. iv, 20, 22, 26–28

ROS Robot Operating System. 10

SDF signed distance function. 27

SIFT scale-invariant feature transform. 6, 15

SLAM simultaneous localization and mapping. iv, 4, 11–13, 18, 19, 31

SVO semi-direct visual odometry. 10

TSDF truncated signed distance function. 14, 19

VO visual odometry. 4, 8, 10–13, 19, 31

42

Approved for public release; distribution is unlimited.

1

(PDF)

DEFENSE TECHNICAL
INFORMATION CTR
DTIC OCA

2

(PDF)

DIRECTOR
US ARMY RESEARCH LAB
RDRL CIO L
IMAL HRA MAIL & RECORDS MGMT

1

(PDF)

GOVT PRINTG OFC
A MALHOTRA

1

(PDF)

UNIVERSITY OF PENNSYLVANIA
DEPT COMPUTER SCIENCE

K DANIILIDIS

ABERDEEN PROVING GROUND

8

(PDF)

DIR USARL
RDRL VT

A GHOSHAL
B SADLER

RDRL VTA
MA FIELDS
H EDGE
C KRONINGER
J OWENS
P OSTEEN

RDRL HRF-D
T KELLEY

43

Approved for public release; distribution is unlimited.

INTENTIONALLY LEFT BLANK.

44

	List of Figures
	List of Tables
	Introduction
	Continuous Object Learning
	Ego-Motion and Tracking

	Brief Survey: Ego-motion
	Visual Odometry
	SLAM
	Attributes
	Challenges

	Brief Survey: Tracking
	Motion-Based Tracking
	Model-Free Tracking
	Model-Based Tracking
	Attributes
	Challenges

	Conclusion
	References
	List of Symbols, Acronyms, and Abbreviations
	Distribution List
	References__Formatted.pdf
	5. References

